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Spherical Paths 

 

Carlo Roselli  

 
Abstract:  

 Drawing on dozens of spherical objects and making some reflections on the geometry of 

the sphere, I discovered the existence of two infinite sets of figures that have been called "Spherical 

Paths" (or, more simply, SP): one set with the cardinality of the countable and the other set with the 

cardinality of the continuum. Then, studying their properties, I have adopted an analytical and a 

geometrical  procedure for their construction. Furthermore, inside the second set, I have perceived 

an interesting subset of thirteen Platonic Spherical Paths, so called for being connected with the 

regular convex polyhedrons. For reasons which rely on the distinction between "real" and 

"fantastic", I will start this manuscript with a short story set in the bizarre world of Alice.     

 
1.  A surprising event 

 

 Recently Alice, inspired by  the geometry of the sphere, spends her evenings  drawing on the 
colored globes of her collection, often lingering  on extravagant conjectures. Lately she ran into a 
problem that kept her awake all the night. Here are the facts of that evening:  
Alice was tracing circles on a milky colored globe with the aim of testing an instrument of her own  
design, a special compass with intermediate nibs (figure 1), suitable for operating on the surface of 
the sphere.  
 Suddenly she had an idea, opened the compass with an amplitude L, pointed on the globe 
one of its extremities on A1 and, rotating it clockwise of an angle ϑ, she traced the arc B1B2 (figure 

2);clearly, each of the intermediate nips described an arch. Then, Alice pointed the compass in B2 

and , rotating it counterclockwise of a same angle, she traced the arc A1A2 (figure 3). This exercise 
was found so stimulating that she kept on describing other arcs following the same rules, 
alternating the two extreme pins of the compass as well as the clockwise and counterclockwise 
rotations, until this game came to an end: the compass, how strange!, appeared exactly in the initial 
position (Figure 4). 

 With a candid smile Alice began to go around her globe to admire that beautiful set of arcs, 
She Decided to call it "Spherical Paths"1 (or, more simply, SP) and called "vertices" the alternative 
points of rotation of the compass.  

  

 
 

Fig. 1 

                                                           

1
 Note that in this paper the term "Path", when not otherwise specified,

 
 means a closed Path. 

   



2 

 

 
 

 

                         Fig. 2                                                        Fig. 3                                                          Fig. 4 

 

 
 In order to better visualize that SP characterized by ten vertices, she projected it into a plane2 (figure 5).  
  

 
 

Fig. 5 

 

 

   
 That experience was very exciting and Alice tried to repeat it fixing a different value for L 
and ϑ, but this time the pins of the compass did not come back into the starting position (figure 6). 
 

 
 

Fig. 6 

                                                           

2
 Even knowing that a figure on the sphere cannot be developed in the plane, Alice represented a conforming figure and made sure 

to respect the measures of some of its elements; in fact, the circular sectors of figure 5, all equal to each other, are consistent with 

those of the SP and their radius is of the same size as that on the sphere; moreover, the line segment between the extremes of the 

median arcs has the length of a maximum circle of the sphere and, on the latter, A1 coincides with A6 and B1 with B6. In the rest of the 

article, this type of representation will often be used. 
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 Not being discouraged at all, she made many other attempts, each with new values of L and 
ϑ, but again without success. Anyway, she was somehow convinced that there should have been a 
procedure to obtain other Spherical closed Paths; this seemed to her an interesting problem to 
afford, but, shortly thereafter, it began to dawn and she fell asleep.   
    Three questions are here proposed to the reader:  

1°- If on a sphere with radius chosen as unitary we try to build  a SP in the same way followed by 

Alice, i.e. fixing arbitrarily the width of the compass as well as its rotation ϑ (for simplicity, in this 

first part of the story, we will always choose L < π and ϑ ≤ π),3 which will be the probability of 

success?   

2°- Was the SP obtained by Alice in the beginning of the story a very exceptional fact?
 
 

3°- Which result would Alice have reached, after the failure of figure 6, in case she had continued 

to draw on the sphere a second series of arches equal to the first one?  

    To answer these questions (the solution is in Appendix at the end of the paper), the reader can 

find a help from the considerations made in the following sections 2 and 3. 

 

 

2. Analytical construction of an infinite set of SP with the cardinality of the countable. 

 

    As well as Alice, we believe that the SP of figure 4 (resulting closed on the first try) is not the 

only possible one; therefore, we would like to find out a mathematical procedure that allows us to 

construct some others, choosing as unitary the radius of the sphere. For this purpose we will study 

that first SP
4
 and its representation in the plane (figure 7).  

 

 

Fig. 7 

 

In this figure we know that the straight line segment M1M11 has the length of a maximum 

circle of the sphere
5
 and that it is divided into ten parts of equal length p, which we call "step of the 

                                                           

3
 The choice of L < π  is justified by the fact that already for L = π the compass would describe a point and thus there would be no 

Spherical Path. As for values of ϑ, on the other hand, Spherical Paths can also be obtained with values of ϑ taken in the interval (π, 

2π) but, in order not to burden the discussion, these will be taken into consideration only in the second part of the article. 

4
 The radius of Alice's sphere is also assumed to be unitary. 

5
 Since the straight line segments A1A6 and B1B6 represent two spherical circles equal to each other and equidistant from M1M11, the 

latter is the analogue of a great circle. 
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SP"; thus, it will be 10p = 2π. A SP will be characterized, not only by the two real numbers L and 

ϑ, but also by two other numbers, one irrational, p, and one natural even,
6
 n, such that 

   

np = 2π,  (*) 

from which it is p = 
n

π2
. Let us examine how the relation (*) conditions the choices of L and ϑ 

studying the portion of the SP described by the first rotation of the compass,
7
 that is the circular 

sector B1A1B2 (figure 8), where M1M2 = p, A1B1 = L e B1Â1B2 = ϑ. Tracing the bisector A1C , we 

consider the right triangle M1CA1 (figura 9), where  

M1C  = 
2

p
, M1A1 = 

2

L
 e M1Â1C  = 

2

ϑ
. 

 

 

 

 
 

Fig. 8                                                                          Fig. 9 

 

 

From the trigonometry of the right triangle on the sphere it turns out
8
 that 

2
sin

2
sin

2
sin

ϑ⋅= Lp
 and therefore, since p = 

n

π2
,  we will write: 

2
sin

2
sinsin

ϑπ ⋅= L

n
      (**). 

This implies that, fixing an n even with n≥4,
9
 and choosing, for example, a value of L, the 

value of ϑ will result dependent from this latter and, precisely, it will be: 

                                                           

6 In the construction of any Spherical Path, a clockwise rotation of the compass will be followed by an counterclockwise one and, if 

you start for example with a clockwise rotation, at the end of the subsequent rotations you will have to end with a counterclockwise 

rotation, otherwise the compass, given the characteristics of the Spherical Path, it would not return to the starting point. The number 

of rotations must therefore be even and therefore also the number n of the steps associated with them. 

7
 For simplicity we will refer in the figure to its analogue in the plan. 

8
  In a right-angled spherical triangle, between sides a, b, c, relations similar to those concerning the sides of a plane right triangle 

hold. However, instead of the known relationships:                                                                        

b = a sin ϑ, c = a cos ϑ 

  we will have, in a unitary sphere, the analogous: 

sin b = sin a sin ϑ,   sin c = sin a cos ϑ. 

For further clarifications see [1]. 
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ϑ  = 2 








2
sin

sin
arcsin

L

n
π

 

and, from the condition that −1≤ 1
sin

sin

2

≤
L

n
π

, it will be
10

 
2

sinsin
L

n
≤π

, from which 
n

π2 ≤ L< π. 
11

  

If, instead, we want to find L in function od ϑ, we will have: 

 L =2 








2
sin

sin
arcsin

ϑ

π
n  

where we observe that it must be 
n

π2 < ϑ  ≤ π.    

Summing up, the values of n, L and ϑ must satisfy the following conditions: 

n ≥ 4               
n

π2 ≤ L < π               
n

π2 < ϑ ≤ π.   

 If  L and ϑ are fixed arbitrarily, we will be in the condition of affording the 1
st 

question 

posed at the end of section 1. For example, fixing  L = 
3

π
 and ϑ  = 

2

π
, we will have 

4
sin

6
sinsin

πππ ⋅=
n

, from which 

n

π
sin  = 

4

2
 

 n  = 
4
2arcsin

π
 ≅ 8,7; 

 

 

                                                                                                                                                                                                 

9
 In fact, if it were n = 2, the (**) would become sin

2
π = sin

2
L ⋅ sin

2
ϑ , from which sin

2
L ⋅ sin

2
ϑ  = 1 and thus,  L = ϑ  = π, while it 

has already been said that L < π  (see footnote 2).. 

10  Observe that in the Spherical Paths 

2
sin

sin
L

n
π

> 0, since n
π , are between 0 and

2
π
. 

11
 This stems from the fact that n

π , 
2
L < 

2
π ; in fact, for a Spherical Path we have n ≥ 4 e L < π;  
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thus, we cannot construct the corresponding SP, because the equation does not have a natural n as 

solution. In general, the expectation to obtain a SP starting from arbitrary choices of L and ϑ will 

depend on the probability to find an even solution of the equation (see answer in Appendix). 

 On the contrary, fixing n and L (or n and ϑ), it is always possible to obtain a corresponding 

SP.  

Let us make an example: given n  = 8 and L  = 
3

π
,
12

 it will be  

ϑ  = π
π

π
==








1arcsin2

sin

sin
arcsin2

8

8 . 

 

Hereafter are shown the corresponding SP (figure 10) and its representation in the plane 

(figure 11).  

 

Fig. 10 

 

 

Fig. 11 

 

In general, once fixed a value of n, it is possible to obtain a SP with ϑ = π,  for which it will 

be: 

 L= 








2
sin

sin
arcsin2

π

π
n = 2 

n

π
. 

 The Spherical Paths with ϑ = π  will be called "Simple". These constitute an infinite set with the 

cardinality of the countable, they being are as many as the even natural numbers. The Simple SL are 

connectable to the regular polygons; in fact, linking the n consecutive vertices of the SP, we obtain 

a regular polygon with n sides; Therefore, from the SP of figure 10 we will obtain a regular octagon 

(figure 12) with its vertices on a maximum circle.  

 

                                                           

12
 Observe that L satisfies the condition, since n

π2  ≤  L < π.. 
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Fig. 12 

 

 Obviously, it is also possible to construct SP with ϑ<π (like the first one drawn by Alice); 

these latter will be called "Complex" and they constitute an infinite set too, but this, differently from 

the Simple set, has the cardinality of the continuum, since the Spherical Paths  are as many as the 

values that  L can assume in the interval (
n

π2
;π).

13
 The Complex Spherical paths are connectable to 

the polyhedrons, since their n vertices are also the vertices of a convex polyhedron belonging to the 

family of the antiprisms.
14

  

Let see an example of SP with n = 8 and ϑ = 
5

2π
, from which it is L=2 









5

8

sin

sin
arcsin

π

π
 

(figure 10.13); linking through straight line segments the vertices A1 with A2, A2 with A3…, A4 with 

A1, then B1 with B2, B2 with B3…, B4 with B1 and, finally,  A1 with B1 and B2, A2 with B2 and B3…, 

A4 with B4 and B1, we will obtain the corresponding polyhedron (figure 10.14) with 8 vertices, 10 

faces and 16 edges.  

 

                                                           

13
 Precisely they would be as many as they are contained in a countable infinity of intervals of this type without, however, changing 

the cardinality of the set which is always continuous. 

14
 Given any complex Spherical Path of n vertices, the antiprism connected to it is a convex polyhedron with n vertices, 2n edges 

and 2 + n faces: two of these, called base surfaces of the antiprism, are regular polygons of 
2
n  equal sides between them, belonging 

to planes parallel to each other and rotated with respect to each other by an angle equal to n
π2 , while the remaining n faces, which 

constitute the lateral surface, are triangles or equilateral (in which case the anti-prism is Archimedean) or isosceles, given that the 

antiprism can be dilated or contracted in the direction of the height as the wave amplitude varies (there is in fact isomorphism 

between this and the antiprism). Among the antiprisms there are two Platonic solids, the octahedron and the tetrahedron; however, 

the latter is an extreme case for which the aforementioned relationships between the number of vertices, edges and faces do not 

apply, as it does not have base surfaces (the tetrahedron has a pair of opposite edges as its basis. refer to [2]. 
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Fig. 13                                                             Fig. 14 

 
 

 

3. Geometrical construction of an infinite set of Spherical Paths with the cardinality of the 

continuum. 

 If so far we have been concerned with finding the existence of Spherical Paths and 

the conditions under which they can be found, now we will try to provide an effective 

geometrical construction, once we have fixed the value of n; For this purpose, it should be 

sufficient, as done by Alice, to open the spherical compass to a width L (fixed in the 

interval 
n

π2
 ≤ L < π), point it on the sphere and, rotating it by an angle ϑ  = 

2 








2
sin

sin
arcsin

L

n
π

 (individuated by a protractor capable of operating on our sphere!), trace 

the first curve and continue in analogous way adopted to construct figure 4, i.e. 

alternating the two extremities of the compass. Anyway, it is evident how hard such a 

construction would be if we consider the difficulty to open the compass by an angle 

located in the protractor that, in general, will be approximate. Therefore, we will propose 

a real procedure aimed to construct Spherical Paths with n steps. We are going to describe 

hereafter such a construction considering an example where n = 8:   

 

1. we divide the sphere into 8 equal spindles.15 
 

2. we trace on the sphere the relative equator 
 

which will result divided into eight arcs.
16

 Be C1, C2, … , C8 the middle points of these latter (figure 

15). 
                                                           

15
 In this case it is possible to carry out this procedure with a spherical ruler and compass based on the Gauss theorem on the 

constructability of regular polygons with a number of sides 2k p1, p2, ... pi with more Gauss primes [3], but in general this will not be 

possible for any even number. Therefore, when n does not allow the division of the sphere into equal spindles, we will have to be 

content with using the protractor. 
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Fig. 15 

 

3. WE trace a geodesic arc that has its middle point in C1 and its extreme points A1 and B1 
on the two meridians of the spindle (figure 16). 

 

4. Pointing the compass in A1 and rotating it clockwise, we trace an arc from point B1 to 
point B2 (figure 17); 

note that the geodesic arc A1B2 crosses the equator in the middle point C2,
17

 and thus it will 

represent the equivalent of A1B1 in the next spindle. The angles that A1B2 describe with the two 

meridians are congruent.
18

  

                                                       

5. Then, pointing the compass in B2 and rotating it counterclockwise from A1 to the oint A2 

(on the next meridian between C3 and C4); 
an equal angle and, thus, a portion of the spherical surface equal to the first will be formed. 

 

6. We will keep proceeding in the same way;  
thus, 8 equal portions of the spherical surface corresponding to the expected SP will be formed 

(figure 18). 

 

 
 

                     Fig. 16                                    Fig. 17                                     Fig. 18 

                                                                                                                                                                                                 
16

 Each in length p  = 
8

2π  = 
4
π . 

17
 In fact, in the triangle C1A1C2 the meridian is the bisector of the angle at the vertex and, therefore, C1, C2 are symmetrical with 

respect to the meridian. 

18 Observe that the triangles A1D1C2 and B2D2C2 are congruent by the second congruence criterion (they are rectangles, D1C2 = D2 C2 

and, finally, the angles in C2 are opposite). 
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This construction, beside being more practical than that one obtained by Alice, results “exact” 

when the spindle division of the sphere can be executed with spherical ruler and compass.
19

 

Moreover, it allows to clarify visually what has been already described analytically, i.e. the 

interdependency of the parameters L and ϑ, as well as the interval of the values that these can 

assume. In fact, referring to figure 15, if along the meridian where is A1 we choose a point closer to 

the equator or further away, in the first case we will obtain L < A1B1 (as minimum  L = p = 
4

π
) and 

ϑ > B1 IÂ B2 (as maximum ϑ = π) and, in the second case L > A1B1 (as upper extreme L = π) and ϑ < 

B1 IÂ B2 (as lower extreme ϑ = 0).  

Summing up, with n = 8 it is possible to construct Spherical Paths as you like choosing, with the 

criteria described above, either any L value such that 
4

π
 ≤ L < π, or any ϑ value such that 

4

π
 < ϑ ≤ 

π  (and, in general, choosing either any L value such that 
n

π2
 ≤ L < π, or any ϑ value such that 

n

π2
 

< ϑ  ≤ π).  

Finally we have found the solution of the problem posed by Alice who, when she wakes up she will 

find her curiosity satisfied.  

 
 

4.  Platonic Spherical Paths. 

 

The Spherical Paths described in this section will be called "platonic", because they are 

conceived starting from a radial projection of platonic solids on the sphere (the radius of which is 

chosen as unitary) constructed taking L equal to the measure of the spherical side of the solid we are 

considering and ϑ equal to the angle of its spherical face or to a n integer multiple of said angle(see 

footnote 2). 

Here is a first example; given on the sphere the hexahedron (Figure 19), it will be possible to 

construct the corresponding SP having L = A1B1  and ϑ = B1 IÂ B2 (figure 20).  

 

 
 

Fig. 19                                                       Fig. 20 

 

                                                           

19
 A spherical ruler, which is also useful for practical purposes, can be given by a hemispherical shell of a certain thickness whose 

concave surface has the same curvature of the sphere on which it will slide and be positioned. As for the compass, we have already 

seen it in figure 1. 
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 The platonic Spherical Paths can be obtained if the values of L and ϑ found in relation with 

the platonic solids imply, in the equation   

2
sin

2
sinsin

ϑπ ⋅= L

n
, 

even values of n with n ≥ 4. 

To find the above values of L and ϑ we will introduce a preliminary study on the 

triangulation of the sphere that will allow us also a unitary visualization of the platonic solids and of 

the buildable related Spherical Paths. Such a study will be almost brief and, if the reader wants to 

avoid the deepening passages, he will not see compromised the understanding of the following 

study concerning the properties of the above Loops.     
 

 

5. Triangulation of the sphere. 

 I will now describe two different triangulations, each obtained dividing the surface of the sphere of unit radius 

into an integer number of equal triangles
20

 called "modules" The two above triangulations will be distinguishable from 

each other, because consisting of modules different in characteristics and number, and each coinciding with the 

ensamble of the radial projections of three among the five platonic solids
21

 having their respective centers of gravity  

coinciding with the center of the sphere and their spherical faces (curvilinear regular polygons) formed by an integer 

number of modules.
22

  

 
 
First Triangulation 

 We take the regular octahedron (figure 21) and project it radially onto the sphere that circumscribes it, so 

that it will be divided into eight identical curvilinear triangles (figure 22). In each of these we trace the curvilinear 

bisectors (figure 23) which, as already in the plane equilateral triangle, are medians and heights and, therefore, divide 

each triangle into six congruent triangles; the sphere will finally be subdivided into 48 curvilinear scalene triangles 

which we will indicate with M1. 

 

                                                           

20Said spherical triangles are congruent with each other and two by two symmetrical with respect to the plane passing through one of 

their sides in common and the center of the sphere (in the geometry of the sphere, as regards the curvilinear polygons, the same 

criteria of congruence of the plane geometry are valid).  

21
 The projection of the octahedron will be common to both triangulations. 

22
 It is our belief that there is no triangulation with equal triangles capable of providing the radial projection onto the sphere of all 

five Platonic solids. In any case, we would have resorted to the two triangulations proposed here, because they are useful for the 

construction of the Platonic Spherical Patgs and for the understanding of their mutual relations. 
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                     Fig. 21                                                      Fig. 22                                                            Fig. 23 

 

 This triangulation allows us to see on the same sphere the projections of the following regular convex 

polyhedra:
 
of the aforementioned octahedron (where each of the 8 faces is formed, as we have seen, by 6 M1) (figure 

24a), of the cube (6 curvilinear squares each formed by 8 M1) (figure 24b) and, finally, of the tetrahedron (4 curvilinear 

triangles each formed by 12 M1) (figure 24c).  

 

 
                                    Fig. 24a                                         Fig. 24b                                        Fig. 24c 

 

 For further information we provide below the characteristics of module M1 (figure 25). Its angles are: α 

=
2
π , being the angle formed by the bisector which, in the equilateral triangle, is also height, γ = 

4
π , since it is the 

angle identified by the bisector, and finally β = 
3
π ,

 
since it is one of the six equal angles in which the rounded angle 

is divided by the bisectors at their meeting point. 
 Since the surface of the sphere has been divided into 48 equal parts, the S1 area of M1 will be  S1 = 48

4π
 = 

12
π , and this agrees with Gauss's formula,

23
 in solid geometry known as the "Elegantissimum Theorema" [4]. 

                                                           

23
                                                                                  α + β + γ = π + ∫∫

T

dAK  

(where K is the Gaussian curvature 2
1

r
, which in a sphere of unit radius is K = 1) and which, therefore, in this case becomes: α + β 

+ γ = π  + S ( where S is the triangle Area) and, since the sum of the angles of M1 is  α +β + γ = 
2
π +

3
π +

4
π =

12
13π , we have: 

S = 
12

13π  − π = 
12
π

. 
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Fig. 25 

 

 As for the sides of M1, b =
4
π
 as half side of the three-right triangle which, in turn, is the fourth part of a 

great circle, from which b = 
4

2π : 2 = 
4
π . For the remaining sides it can be shown, with trigonometry, that a = 

3
2arcsin  and that c = 

2
π  − 

3
2arcsin . 

 Let us now see the characteristics of the regular polygons projected onto the sphere based on the 

measurements of M1 and referring to figures24a, 24b, the curvilinear angles corresponding to the faces of the 

tetrahedron have side LT = 2α = 2
3
2arcsin  and angle 2β  = 

3
2π . The curvilinear squares corresponding to the faces 

of the hexahedron have side LE = 2c = 2(
2
π -

3
2arcsin ) and angle 2β  = 

3
2π . Finally, the curvilinear triangles 

corresponding to the faces of the octahedron have side LO = 2b = 
2
π  and angle 2γ = 

2
π .  

  

 

  
Second Triangulation    
 

 We take the regular icosahedron inscribed in the sphere (figure 26) and, as previously done with the 

octahedron, we project it radially onto it (figure 27) obtaining twenty identical equilateral curvilinear triangles with 

angles of π
5

2
, ince five converge at each vertex. In each of these we trace the bisectors (figure 28), so that on the 

sphere there will appear a total of 120 curvilinear scalene triangles which we will indicate with M2. 

 

 
 

                          Fig. 26                                                    Fig. 27                                                      Fig. 28 

        

 With this triangulation we can identify the radial projection of the following regular polyhedra: of the 

aforementioned icosahedron (20 curvilinear triangles, each formed by 6 M2) (figure 29a), of the dodecahedron (12 
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curvilinear pentagons, each formed by 10 M2) (figure 29 b) and of the octahedron (8 curvilinear triangles, each formed 

by 15 M2) (figure 29c).
24

 

     

 

 

 
 

                         Fig. 29a                                                   Fig. 29b                                                    Fig. 29c 

 

     

 The angles of module M2 (figure 30) are: α =
2
π
 and β  = 

3
π  

for the same reasons given for module M1, 

while δ  = 
5
π
 because it is half the angle of the starting equilateral triangle. Since the spherical surface has been divided 

into 120 equal parts, the area S2 of the surface of M2 is S2 = 
30
π , according to Gauss's formula.25  

 

 
Fig. 30 

 As for the sides of M2, a' = 2
π  − (b' + c');

 
in fact, since each great circle is made up of 4a' + 4b‘+4c’, it 

is 4(a'+b'+c') = 2 π  and, therefore, a' + b '+ c' = 
2
π ; it is then shown with trigonometry that c' = 

153

2

+
arcsin  and 

b' = 
5210

2

+
arcsin .

26
 

                                                           

24
 Also in this case (Fig. 29c) it is possible to see how the twelve-verticals of the icosahedron coincide with the centers of the faces 

of the dodecahedron and, viveversa, how the twenty vertices of the latter coincide with the centers of the faces of the icosahedron. 

25Remembering that the surface area of module M1 is S1 = 
12

π
, we shall have S1/S2 = 

30

12

π

π
 = 

5
2

. 

26
 From the measurements of the sides of M1 and M2 it results 

''' cba
cba

++
++

= 
3
2
. 
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  The curvilinear regular polygons present on the triangulated sphere with M2 have the following 

characteristics: the curvilinear triangles corresponding to the faces of the octahedron (see figure 29c) have side LO =
2
π , 

since LO = a' + b' + c', and inner corner α = 
2
π ;

 
the curvilinear pentagons corresponding to the faces of the 

dodecahedron (see figure 29b) have side LD = 2c’= 2
153

2

+
arcsin  and angle 2β = 

3
2π . Finally, the curvilinear 

triangles corresponding to the faces of the icosahedron (figure 29a) have side LI = 2b' = 2
5210

2

+
arcsin  and angle 2δ 

= 
5

2π . 

 

6. Constructability of the platonic Spherical Paths. 

 Table 1 includes the characteristics of the faces of each platonic solid projected on the 

sphere of unitary radius.  

 

 
Table 1 

Platonic 

solid  

Spherical side Angle of the spherical 

face 

 Symbol Radians Symbol Radians 
Tetrahedron LT  2

3
2arcsin  ϑT 

3
2π  

Hexahedron LE  2 (
2
π -

3
2arcsin ) ϑH 

3
2π  

Octahedron LO  
2
π  ϑO 

2
π  

Dodecahedron LD  2
153

2

+
arcsin  ϑD 

3
2π  

Icosahedron LI  2
5210

2

+
arcsin  ϑI 

5
2π  

 

 The values of L and ϑ in this Table are such that the equation  

2
sin

2
sinsin

ϑπ ⋅= L

n
 

that links each other is always satisfied by an even n (with n ≥ 4) and precisely in the following 

order: nT = 4, nH = 6, nO = 6, nD = 10, nI = 10.  
In Table 2 here below, represented on the plane, are the Spherical Paths

27
 buildable using the 

compass devised by Alice. 

                                                           

27 For simplicity, the two intermediate curves will not be shown.  
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Table2 

Platonic solid Spherical Path derived
28

 

 

 

Tetrahedron 

 

 

 

 

 

 

 

 

 

Hexahedron 

 

 

 

 

 

 

 

Octahedron 

 

 

 

 

 

 

Dodecahedron 

 

 

 

 

 

Icosahedron 

 

 

 

 

 
 
 
But there are a few others…  
 

 The five SWs described above are not the sole Platonic Paths (as initially defined). In fact, it 

is possible to construct a few others substituting the values of ϑ  in Table 1 by integer multiples of 

the angle (see footnote 2) and leaving the values of L unchanged.  
 For example, we can obtain a sixth SP deriving it from the tetrahedron, choosing L = LT and 

ϑ = 2ϑT = 
3
4 π. Proceeding  in an analogous way with the other angles listed in Table 1, we will 

obtain other seven SP; thus, altogether there are thirteen platonic SL and their characteristics are 

summarized in the following Table.  

                                                           

28Since the dashed segment (which is divided by the central curve into n equal parts) is the analogue of a great circle on the sphere of 

unit radius, its length will be the same in all five of the Spherical Paths represented here. 
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Table 3 

Spherical Path of L ϑ n 

Tetrahedron LT ϑT = 3
2  π  4 

Tetrahedron LT 2ϑT  = 3
4  π  4 

Hexahedron LH  ϑH = 3
2  π  6 

Hexahedron  LH 2ϑH = 3
4  π  6 

Octahedron LO        ϑO = 2
1  π  6 

Octahedron  LO 2ϑO = π  4 

Octahedron  LO     3ϑO = 2
3  π  6 

Dodecahedron LD  ϑD = 3
2  π  10 

Dodecahedron LD     2ϑD = 3
4  π  10 

Icosahedron LI   ϑI = 5
2  π  10 

Icosahedron  LI 2ϑI = 5
4  π  6 

Icosahedron  LI 3ϑI = 5
6  π  6 

Icosahedron  LI 4ϑI = 5
8  π  10 

 

 The data of this Table allow us to focus some characteristic aspects of the platonic Spherical 

Paths. First of all, we note that in six of them we have ϑ < π, in one ϑ = π  and in the remaining six 

ϑ > π. These latter, differently from the former which result already familiar to us, show 

intersections of their curves and, therefore, they are almost complicate. To have an idea of this, let 

us take a look of one of them, for example the SP of the tetrahedron with ϑ  = 
3
4
π  (figure 31).

29
  

 

 

 

 
 

Fig. 31 

 

                                                           
29
 It is observed that in the two Spherical Paths of the tetrahedron the respective angles ϑ are supplementary, as well as in the following pairs of 

Spherical Paths: the two of the hexahedron, of the dodecahedron, the first and third of the octahedron, the first and fourth of the icosahedron and, 

finally, the second and third of the latter; this implies that each of said pairs of Spherical Paths connected to the same antiprism..  
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 If we want to see it on the plane, as always done before, we realize that the above 

intersections, due to a loss of the isometry, can be represented partly and inadeguately (figure 32. 

Another characteristic of this particular Sç consists in covering the whole spherical surface.
30

 

 
 

Fig. 32 

 

 We will now take a look at the sole platonic SP where ϑ = π, that is the second of the 

octahedron in Table 3. This particular value of ϑ, as we already know, is telling us that it is a simple 

SP. It will be the last one to be illustrated  (figure 33)
31

 because endowed by a property that is not 

possessed by any other SP without intersections: the area of its surface coincides with that of the 

sphere. 

     

  
 

Fig. 33   

     

 Finally we will use its representation in the plane (figure 34) to make the following 

observations: since the amplitude L of the SP is equal to 
2

π
, the four arcs B1B2, B2B3, A1A2, A2A3 

will correspond to maximum semicircles of the sphere; but, knowing that B1 coincides with B3 and 

A1  with A3, the first of the above arcs will coincide with the third one, and the second with the 

                                                           

30
 Any SP, in which it  is ϑ ≥ π  and L ≥ π, will cover the entire surface of the sphere and, therefore, as can be deduced from Table 

3, there will be only three Platonic Paths with such a characteristic, the one illustrated above, the second of the hexahedron  and the 

second of the octahedron. 

31
 Its central curve is highlighted in bold. 
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fourth one; thus, we will obtain only two maximum semicircles on the sphere belonging to two 

orthogonal planes opposite to  the center of this latter (figure 33).  

    Furthermore,
 
their extremes, which represent the 4 vertices of the Path, will also be the 

vertices of a square inscribed in a maximum circumference (which in Figure 34 corresponds to the 

dotted segment M1M5). 
  

 

 
 

Fig. 34 

 

     Finally, from the data of Table 3 it is also inferred that only four Spherical Paths have the 

number of vertices equal to that of the solid from which they are respectively derived: the two of the 

tetrahedron and the two of the octahedron with n = 6; this implies that the vertices of the former will 

also be the vertices of a tetrahedron, while those of the latter will also be the vertices of an 

octahedron. So here is a question: to which solid will each of the other eight complex Platonic Paths 

be connected? The reader is left with the opportunity to find the answer and then compare it with 

the one reported in the appendix to the fourth point. 
     

 

7.The duality. 

    Our research could thus be considered finished, given that we had essentially set ourselves 

two objectives: to find a way to construct the set of Spherical Paths and to classify their subsets. 

However, there is one last thing that would be worth knowing and that concerns the entire family of 

Platonic Spherical Paths. Since there is a precise relationship between these and the Platonic solids, 

one wonders whether the principle of duality which the latter obey can in any way be reflected on 

the former. In carrying out this brief investigation we will find it useful to refer to some figures 

relating to the previous study on the triangulation of the sphere. 

    Let's take the triangulated sphere with M1 of figure 24a and consider two sides of a spherical face 

of the octahedron, A1B1 and A1B2 (figures 35-36). 
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                                Fig. 35                                                                            Fig. 36 

 

 Knowing that their midpoints, M1 and M2, of said sides coincide with the midpoints of the 

two consecutive sides C1D1 and C1D2 of a face of the cube, let's see what happens when we start 

building the SP of the octahedron: pointing the compass in A1 and tracing the arc B1B2 (figure 37), 

we observe that the arc M1M2 described by the central nib turns out to be ¼ of a circumference 

inscribed in the spherical face of the cube. You will have the reverse in building the SP of the 

hexahedron; in fact, pointing the compass at C1 and tracing the arc D1D2 (Figure 38), the M1M2 arc 

described by the central nib will be different from the previous one and will be 1/3 of a 

circumference inscribed in the spherical face of the octahedron. 
 

    

 
 

Fig. 37                                                               Fig. .38 

 

      This will apply to all bows described by the central nib. Therefore, the central curve of the 

SP of the octahedron (formed by six arcs of ¼ of a circumference and resulting inscribed in the 
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faces of the hexahedron) we will call it "Loop Curve1/4" (in short, "LC1/4") of the hexahedron, 

while that of the SP of the hexahedron (formed by six arcs of circumference and resulting inscribed 

in six faces of the octahedron) we will call it "LC1/3 of the octahedron". To get a clearer idea of the 

aforementioned central curves, we show them together with the solid in which they are respectively 

inscribed (Figures 39-40, where for brevity, CC stands for "Central Curve" and SL, as already 

established, stands for "Spherical Loop"). 

 

       

8. The thirteen platonic Loop Curves (LC). 
 

 
                                      Fig. 39                                                       Fig. 40 
                                   LC1/4 of the hexahedron                                                LC1/3 of the octahedron 
                            (CC  of the SP of the octahedron)                             CC of the SP of the hexahedron) 

 
 

 With the same argument, the central curve of the SL of the dodecahedron will be the 

LC1/3 of the icosahedron (inscribed in ten of its faces, as shown in figure 41), while that of the SL 

of the icosahedron will be the LC1/5 of the dodecahedron (inscribed on ten of its faces, as shown in 

figure 42). Otherwise, the central curve of the SP of the tetrahedron, which will be inscribed in the 

spherical faces of its dual tetrahedron, we will call LC1/3 of the tetrahedron [6] (Figure 43).  

 All this is an implication of the principle of duality which the Platonic solids obey.   
 

                   

Fig. 41                                        Fig. 42                                            Fig. 43 

                LC1/3 of the icosahedron                              LC1/5 of the dodecahedron                         LC1/3 Pf the tetrahedron 

    (CC of the SP of the dodecahedron)            (CC of the SP of the icosahedron)               (CC of the SP of the tetrahedron) 
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 Based on the same criteria, here are the remaining eight platonic LC (figures 44-51):  

 

 
                Fig. 44                                              Fig. 45                                                 Fig. 46 
              LC2/3 of the tetrahedron                            LC2/3  of the octahedron                                         LC1/2  of the hexahedron         

(CC of the SP of the tetrahedron)                      (CC  of the SP of the hexahedron)                      (CC  of the SP of the octahedron)          

     

 

 

 
             Fig. 47                                              Fig. 48                                                   Fig. 49 
        LC3/4  of the hexahedron                                        LC2/3 of the icosahedron                                      LC2/5 of the dodecahedron 

(CC of the SP of the octahedron)               ( CC  of the SP of the dodecahedron)                     ( CC  of the SP of the icosahedron) 

 

 

 
 

                                                 Fig. 50                                                       Fig. 51 
                                     LC3/5 of the dodecahedron                                               LC4/5 of the dodecahedron  
                                   (CC of the SP of the icosahedron)                                ( CC  of the SP of the icosahedron)      

 

 

 Our study on the sphere can now be considered concluded, even if the temptation to want 

to say something else is always strong. For example, it would be interesting to proceed by 

describing the properties and the degree of symmetry of these last Platonic LC. It will be done on 

another occasion and, perhaps, even more, considering that there is still a lot to explore in the 
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contest of the Spherical Paths. This is obviously my personal conviction, but imagine, just to 

suggest an idea, that you want to deal with them from a mechanical point of view. You never know 

where it ends! 
 

 

 

Appendix: answers to the questions asked at the end of section 1. 

• The probability space, where fixed n we take the pair (L, ϑ), is represented by the square (0; 

π)×(0; π], while the values that lead to the formation of a SP of frequency n are the pairs( L , ϑ) 

with  ϑ ∈ (0; π] and L = L(ϑ), that is the couples of the function graphic  L = 2arcsin ( )
2

sin

sin

θ

π
n . The 

probability of being in any point of said curve is null, as this is given, as known, by the ratio 

between the null area of the curve and the area of the square (0; π)×(0; π] pari a π
2
; on the other 

hand, the total probability will be the sum of the infinite null areas which, being of the cardinality of 

the countable (one for every fixed n), will also lead to a total probability zero.  

 

• The probability of tracing a wave with a real compass, having points of a certain thickness and 

therefore confusing even if not exactly superimposed, will instead be not zero, since this time the 

values will be attributable not to a graph but to a strip of small area but not nothing; the probability 

in this case will depend on the ratio of the area of this to the surface area of the sphere. Therefore, it 

would seem that the SP has been traced in an apparently exact way (let's not forget the distinction 

between the real and the ideal). 

 

• If, after the disappointing result illustrated in Figure 6, a second series of identical operations 

were continued, another Loop would be obtained out of phase with respect to the first (Figure 52); it 

should be noted that on the sphere points A6 and B6 will not coincide with A1 and B1 respectively, 

but with the backward points A7 and B7. 
 

 
 

Fig. 52 
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11. Cyclic Spherical Paths. 
 

 So far we have considered the Spherical Paths which close after only one revolution along 

a maximum circumference and, therefore, with an even number of arcs. We would now like to draw 

inspiration from this last result to consider those Spherical Paths that close after a whole number of 

revolutions and which we will call k-cyclic. Under what conditions will these Spherical Paths close? 

By specifying now with n the number of arcs in a single turn (meaning by n a fraction of arcs of the 

SP), we will be able to observe that after k turns nk arcs will be described and that the SP will close 

when nk is even (that is when nk = 2s with s∈N and s ≥ 3). 
 From this it follows that n will be equal to the ratio between two integers (in fact, n = k

s2 , 

where s and k are the natural minima such that n can be expressed in the above way) and, therefore, 

n will be odd or rational. Let's make a first example of a SP with n = 5: this will close on condition 

that nk is even and, therefore, with k = 2 (it should be noted that this is valid for all odd numbers n 

and not only for 5); we will therefore have a SP that closes with nk = 10 arcs, ie after 10 rotations of 

the compass, corresponding to two turns along a maximum circle; after the first 5 rotations it will be 

out of phase by one step with respect to the starting configuration (figure 53) and it will be so up to 

the tenth rotation (figure 54), after which it will close. 

 

 
 

Fig. 53 

 

 

 
 

Fig. 54 
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 By fixing instead a rational n, one can obtain k-cyclic Spherical Paths with k ≥ 3.
 
For 

example, setting n =
2
9 , we will have 

2
9 k, with k = 4, from which nk = 18, and therefore have 4-

cyclic SP (that is, they will close with 18 arcs, equivalent to 4 turns along a maximum circle).
 
These 

will behave in the following way: after the first series of rotations, and until the end of the second 

series, they will be out of phase by ½ step, out of phase by one step during the third series, by ½ 

step during the fourth and, at the end of this last (i.e. the eighteenth rotation) will close.  

 Finally, if we fix an irrational n, for example n = 2π (in this particular case, since the 

sphere has a unitary radius, it will be p = 1), we will obtain Spherical Paths which, as mentioned 

above, never close. 

 In general, the polyhedra connected to the complex Spherical Paths are antiprisms (these 

have already been mentioned in footnote 14). There are only four Spherical Paths in which the 

connected antiprism is a Platonic solid: the two of the tetrahedron and the two of the octahedron 

with n = 6 listed in Table 3; in fact, these are the only Spherical Paths in which the number n of the 

vertices corresponds to the number of the vertices of the Platonic solid from which they take their 

name. Of the other eight Platonic paths, two are connected to Archimedean antiprisms and, 

precisely, the first and fourth of the icosahedron, while the remaining six are connected to non-

Archimedean antiprisms. However, it is observed that the antiprisms connected to these last eight 

Spherical Paths will have a precise relationship with the Platonic solid from which they take their 

name. For example, consider the Spherical Path of the hexahedron, in which the number n of  

vertices is n = 6; the antiprism connected to it is clearly shown in the center of the three figures 

below. This antiprism, which has two equilateral triangles as its base surface and six isosceles 

triangles as its side surface, is nothing more than a hexahedron with two truncations; these, as can 

be seen in the figures below, are obtained with two cross section planes parallel to each other, 

opposite with respect to the center of gravity of the solid and each passing through 
2
n  = 

2
6  = 3 

vertices. In summary, the antiprism connected to a Platonic SP of n vertices can be one of the 

following solids: tetrahedron, octahedron, Archimedean or non-Archimedean antiprism; in the latter 

case it will be the equivalent of a Platonic solid (Hexahedron, dodecahedron or icosahedron) with 

two truncations obtained (in a way as described in figures 55-57) with two section planes each 

passing through 
2
n vertices. 
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                   Fig. 55                                          Fig. 56                                             Fig. 57 
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